Precalculus

9-04 Inverse Matrices

Identity Matrix (I)

- $A \cdot I=A$
- $A \cdot A^{-1}=I$
- Both A and A^{-1} must be
- $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ OR $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ OR $I=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Inverse of $\mathbf{2 \times 2}$

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Find the inverse of $\left[\begin{array}{cc}1 & 0 \\ -2 & 4\end{array}\right]$

Find other inverses

- the matrix with the \qquad matrix
- Use Gauss-Jordan elimination to turn the \qquad matrix into the \qquad matrix
- $[A: I] \rightarrow\left[I: A^{-1}\right]$

Find the inverse of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & -2 \\ -3 & 4 & -4\end{array}\right]$

Use an inverse to solve system of equations

- Write system as \qquad
- $A X=B$ (coefficients \cdot variables $=$ constants)
- $A^{-1} A X=A^{-1} B$
- $I X=A^{-1} B$
- $\quad X=A^{-1} B$
- Solve by multiplying the \qquad of the coefficients with the
Solve $\left\{\begin{array}{r}2 x+3 y=0 \\ x-4 y=7\end{array}\right.$

